Flux-pinning mechanism in silicone-oil doped MgB2: Evidence for charge-carrier mean free path fluctuation pinning

نویسندگان

  • Shaban R. Ghorbani
  • Xiaolin Wang
  • S X. Dou
  • Sung-Ik Lee
  • Md S. Hossain
  • S. R. Ghorbani
  • X. L. Wang
  • S. X. Dou
  • Sung-IK Lee
  • S. A. Hossain
چکیده

Flux-pinning mechanism of MgB2 doped with 10 wt % silicone-oil sintered at low and high temperatures has been investigated by magnetic measurements. The field dependence of the critical current density, jc(B), was analysed within the collective pinning model. A crossover field, Bsb, from the single vortex to the small vortex bundle-pinning regime was observed. For both types of sintered samples, the temperature dependence of Bsb(T) at low temperature is in good agreement with the δl pinning mechanism, i.e., pinning associated with charge-carrier mean free path fluctuation. At temperatures close to the critical temperature, however, there is evidence for δTc pinning, which is associated with spatial fluctuations of the transition temperature. These results provide strong evidence that the liquid precursor, silicone oil, produces very small pinning centers and enhances the jc(B).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of the sintering temperature on the flux-pinning mechanism and the activation energy of malic-acid doped MgB2

  The flux-pinning mechanism and activation energy of 10 wt % malic acid-doped MgB2 were investigated by measuring of the critical current density and resistivity as a function of magnetic field and temperature. A crossover field, Bsb, was observed from the single vortex to the small vortex bundle pinning regime. For the sintered sample, the temperature dependence of Bsb(T) at low temperature i...

متن کامل

سازوکار میخکوبش و انرژی فعال سازی در ابررسانای MgB2 آلاییده به مالیک اسید

Fulx-pinning mechanism and activation energy of MgB2 doped with 10 wt % malic- acid has been investigated by measurement of critical current density and resistivity as a function of magnetic fields and temperatures. The field dependence of the critical current density, Jc(B), was analyzed within the collective pinning model. A crossover field, Bsb, from the single vortex to the small vortex bun...

متن کامل

Evidence for transformation from δTc to δl pinning in MgB2 by graphene oxide doping with improved low and high field Jc and pinning potential

Flux pinning mechanism of graphene oxide (GO) doped MgB2 has been systematically studied. In the framework of the collective pinning theory, a B-T phase diagram has been constructed. By adjusting the GO doping level, the pinning mechanism in MgB2 transformed from transition temperature fluctuation induced pinning, δTc pinning, to mean free path fluctuation induced pinning, δl pinning, is observ...

متن کامل

The effects of annealing temperature on the in-field Jc and surface pinning in silicone oil doped MgB2 bulks and wires

The effects of sintering temperature on the lattice parameters, full width at half maximum (FWHM), strain, critical temperature (Tc), critical current density (Jc), irreversibility field (Hirr), upper critical field (Hc2), and resistivity (ρ) of 10 wt % silicone oil doped MgB2 bulk and wire samples are investigated in state of the art by this article. The a-lattice parameter of the silicone oil...

متن کامل

Quasiparticle scattering induced by charge doping of iron-pnictide superconductors probed by collective vortex pinning.

Charge doping of iron-pnictide superconductors leads to collective pinning of flux vortices, whereas isovalent doping does not. Moreover, flux pinning in the charge-doped compounds is consistently described by the mean-free path fluctuations introduced by the dopant atoms, allowing for the extraction of the elastic quasiparticle scattering rate. The absence of scattering by dopant atoms in isov...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017